$$
1 + 2 = 3
2 - 3 = 5
3 \times 2 = 6
6 \div 3 = 2
$$
$$
\frac{1}{2} - \frac{1}{3} = \frac{1}{6}
\frac{a+b}{2ab}
$$
$$
ax^2 + bx + c = 0
y = x^{\frac{1}{2}}
$$
$$
\begin{align}
f(x) &= x^2+3x+2
&= (x+1)(x+2)
\end{align}
$$
$$
\lim_{x \to \infty} f(x)
$$
$$
e^{i\pi} = -1
e^{i\theta} = \cos \theta + i \sin \theta
$$
$$
\int f(x)dx
\int_{a}^{b}f(x)dx
$$
$$
\sum{k=1}^{n} k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}
\sum{k=1}^{n} k^2 = 1^2 + 2^2 + 3^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}
$$
$$ i \hbar \frac{\partial \psi}{\partial t} = H \psi(x,t) $$
$$
\vec{A} = \vec{B} + \vec{C}
F = m\ddot{x}
$$
$$
\left(
\begin{array}{ccccc}
a{11} & \cdots & a{1i} & \cdots & a{1n}
\vdots & \ddots & & & \vdots
a{i1} & & a{ii} & & a{in}
\vdots & & & \ddots & \vdots
a{n1} & \cdots & a{ni} & \cdots & a_{nn}
\end{array}
\right)
$$